Contents lists available at SciVerse ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Effects of TiO₂ crystal structure on the performance of Li₄Ti₅O₁₂ anode material

Feng Ning^{a,b}, Yan-Bing He^a, Baohua Li^{a,*}, Hongda Du^a, Dengyun Zhai^{a,b}, Feiyu Kang^{a,b,**}

^a Key Laboratory of Thermal Management Engineering and Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China ^b Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

ARTICLE INFO

Article history: Received 20 September 2011 Received in revised form 20 October 2011 Accepted 29 October 2011 Available online 9 November 2011

Keywords: TiO₂ crystal structure Li₄Ti₅O₁₂ Heat treatment Electrochemical performance

ABSTRACT

Li₄Ti₅O₁₂ anode material is synthesized using TiO₂ with different crystal structure as titanium source by solid-state method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical test methods are applied to characterize the effects of TiO₂ crystal structure on the structure, morphology and electrochemical performance of Li₄Ti₅O₁₂. Results show that the reaction of TiO₂ with Li₂CO₃ is an exothermic behavior. The reactivity of TiO₂ with Li₂CO₃ gradually decreases and the particles size of Li₄Ti₅O₁₂ increases with the TiO₂ crystal structure changing from amorphous to rutile. The TiO₂ crystal structure has a slight influence on the reversibility of Li₄Ti₅O₁₂, while the specific capacities of Li₄Ti₅O₁₂ at different current densities decreases obviously with the TiO₂ crystal structure changing from amorphous to rutile and the sample using amorphous TiO₂ as titanium sources shows highest specific capacity. The capacity retentions of all Li₄Ti₅O₁₂ samples are above 97% after 50 cycles and these materials show good cycle performance. The TiO₂ crystal structure has not large effects on the cycling performance of Li₄Ti₅O₁₂

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The fast development of electric vehicles has raised a strong demand for high-power and safety lithium ion power battery. However, at present, the anode material of graphite as the common anode material has high reactivity with electrolyte. Thus, the development of new anode materials with high safety and excellent performance are necessary and urgent for the development of electronic vehicle. Spinel Li₄Ti₅O₁₂ material has an excellent reversibility of Li-ion intercalation and de-intercalation with a theoretical capacity of 175 mAh g⁻¹, and also exhibits zero strain volume change during charge and discharge cycles with an excellent safety performance [1–3]. It also has a very flat voltage plateau at around 1.55 V (vs. Li/Li⁺), which is higher than the reduction potential of most organic electrolytes [4–6]. Being much safer and more stable than carbon-based materials, Li₄Ti₅O₁₂ has been demonstrated as a good candidate of negative electrode material for long-life lithium-ion power batteries. Thus, the Li₄Ti₅O₁₂ material has become a research hotspot.

Currently the preparation methods of $\rm Li_4Ti_5O_{12}$ materials mainly include solid-state and liquid-state methods. The solid-state

** Corresponding author at: Key Laboratory of Thermal Management Engineering and Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China. Tel.: +86 755 26036118; fax: +86 755 26036118.

E-mail addresses: libh@mail.sz.tsinghua.edu.cn (B. Li), fykang@mail.tsinghua.edu.cn (F. Kang).

method due to its simple synthesis, facile scale up and low cost has been used in many investigations for synthesis of Li₄Ti₅O₁₂ [7–13]. The factors, which influence the solid phase reaction, mainly include reaction temperature, reaction time and precursors. So far, there are many works to find the optimal reaction time and temperature for the synthesis of Li₄Ti₅O₁₂ materials, and it has been found that the general sintering temperature is between 800 and $1000 \circ C$, and the holding time is mostly above 12 h [14, 15, 2, 16, 17]. It is well-known that the solid-state method usually uses the TiO₂ and Li₂CO₂/LiOH as the raw materials. Until now, the anatase TiO₂ is mainly used as the titanium source to synthesize the Li₄Ti₅O₁₂ [18,19]. In recent years, the amorphous TiO₂ and rutile TiO₂ also can be used to prepare the Li₄Ti₅O₁₂, which shows good electrochemical properties [18,20]. For instance, Li₄Ti₅O₁₂/C composite with long life can be synthesized using the amorphous TiO_2 [20]. The rutile TiO₂ after surface activation can be used to synthesize the Li₄Ti₅O₁₂, which shows the discharge capacity of \sim 175 mAh g⁻¹ at 1 C rate [18]. From above reports, it can be found that the preparation of $Li_4Ti_5O_{12}$ is only using one kind of TiO_2 as titanium source, and until now we do not know the effects of TiO₂ crystal structure on the performance of $Li_4Ti_5O_{12}$. In fact, the performance of Li₄Ti₅O₁₂ using different crystal structural TiO₂ as titanium source may be significantly different. Thus, it is very important to investigate the effects of TiO₂ crystal structure on the synthesis of Li₄Ti₅O₁₂ to further optimize the preparation conditions of $Li_4Ti_5O_{12}$.

In this work, we prepared the amorphous TiO_2 using microemulsion method as our previous work [20], and then amorphous TiO_2 was treated at different temperatures in air condition to obtain the

^{*} Corresponding author. Tel.: +86 755 26036419; fax: +86 755 26036419.

^{0925-8388/\$ -} see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2011.10.109

Fig. 1. TG-DSC curves of amorphous TiO₂.

anatase, hybrid phase containing both the anatase and rutile TiO_2 , and rutile TiO_2 . The $Li_4Ti_5O_{12}$ materials were prepared using above obtained TiO_2 and the effects of TiO_2 crystal structure on the performance of $Li_4Ti_5O_{12}$ anode material were investigated extensively.

2. Experimental

2.1. Preparation of TiO₂ nanoparticles

The saturated solution of cetyltrimethylammonium bromide (CTAB) was prepared with the deionized water under continuous stirring for 2 h. The butyl titanate (Ti(OC₄H₉)₄) was then added into the CTAB solution under ultrasound mixing. Then the stoichiometric ammonia was added under ultrasound mixing for 15 min and continuous stirring for 2 h. The resultant solution of amorphous TiO₂ was filtrated

Fig. 2. XRD patterns of amorphous TiO₂ after treatment at different temperatures: (a) without heat treatment; (b) 450 °C; (c) 700 °C and (d) 900 °C.

and dried to obtain the amorphous TiO₂ nanoparticles. Thermograyimetric (TG) and Differential Scanning Calorimetry (DSC) measurements for amorphous TiO₂ at air atmosphere were conducted with a heating rate of $10 \,^\circ$ Cmin⁻¹ from 50 to 800 $^\circ$ C by using a NETZSCH STA449 C system. And then the prepared amorphous TiO₂ was treated under 450 $^\circ$ C, 700 $^\circ$ C, and 900 $^\circ$ C for 8 h at air condition, respectively, and the anatase, anatase and rutile hybrid phase, and rutile TiO₂ were obtained.

2.2. Preparation of Li₄Ti₅O₁₂ materials

 $Li_4Ti_5O_{12}$ materials were synthesized by solid-state method using above obtained TiO_2 with the Li_2CO_3 . The prepared TiO_2 and Li_2CO_3 were mixed at the Li:Ti molar ratio of 4.2:5. The precursors were ground for 6 h by a wet ball-milling in

Fig. 3. SEM images of amorphous TiO₂ after heat treatment at different temperatures: (a) without heat treatment; (b) 450 °C; (c) 700 °C and (d) 900 °C.

Fig. 4. TG-DSC curves of precursors of Li_2CO_3 and TiO_2 with different crystal structure: (a) amorphous TiO_2 ; (b) anatase TiO_2 ; (c) hybrid phase and (d) rutile TiO_2 .

an acetone solution. The resultant stable gel was dried at 80 °C to form a mixed dry precursor. The dried powder precursor was then calcinated at 800 °C for 12 h in air atmosphere to obtain Li₄Ti₅O₁₂. TG-DSC measurements for precursors of prepared TiO₂ and Li₂CO₃ at air atmosphere were conducted with a heating rate of 10 °C min⁻¹ from 50 to 800 °C.

2.3. Structure and morphology characterization of prepared powders

X-ray diffraction (XRD) patterns of the prepared TiO₂ and Li₄Ti₅O₁₂ samples were obtained by a Rigaku D/max 2500/PC diffractometer using Cu K α radiation in an angular range of 10–90° (2 θ) with a 0.02° (2 θ) step. The morphology of the prepared powders including TiO₂ and Li₄Ti₅O₁₂ was observed with an environment scanning electron microscope (FE-SEM, HITACH S4800).

Fig. 5. XRD patterns of $Li_4Ti_5O_{12}$ synthesized using different crystal structural TiO_2 : (a) amorphous TiO_2 ; (b) anatase TiO_2 ; (c) hybrid phase and (d) rutile TiO_2 .

2.4. Cell assembly and testing

2032 coin cells were assembled using the prepared $Li_4 Ti_5 O_{12}$ as cathode material, lithium foil as anode, and polypropylene as separator. The cathode consisted of 80 wt% $Li_4 Ti_5 O_{12}$, 10 wt% Super-P and 10 wt% poly(vinylidene fluoride) (PVDF). The electrolyte was 1 M LiPF_6 in a 1:1 mixture of ethylene carbonate and diethyl carbonate (1 M LiPF_6/EC + DEC). The cells were assembled in a glove box filled with high purity argon gas.

The electrochemical workstation (VMP3) was used to measure the cyclic voltammograms (CV) and the electrochemical impedance spectrum (EIS) of cells. EIS of the coin cells were measured at half state of charge using $\rm Li_4Ti_5O_{12}$ as the working

Fig. 6. SEM images of Li₄Ti₅O₁₂ synthesized using different crystal structural TiO₂: (a) amorphous TiO₂; (b) anatase TiO₂; (c) hybrid phase and (d) rutile TiO₂.

Fig. 7. CV of $Li_4Ti_5O_{12}$ synthesized using different crystal TiO₂: (a) amorphous TiO₂; (b) anatase TiO₂; (c) hybrid phase and (d) rutile TiO₂.

electrode and lithium as both the reference and counter electrodes. The impedance was measured by applying a 5 mV ac oscillation with the frequency ranging from 100 kHz to 0.01 Hz. The CV of coin cells were measured with $Li_4Ti_5O_{12}$ electrode as the working electrode, lithium foil as both the reference and counter electrodes. A scanning rate of 0.1 mV s⁻¹ was applied with a sweep voltage range of 2.5–1 V (vs. Li/Li⁺). The cycling performance of $Li_4Ti_5O_{12}$ electrodes at current density of 17.5 mA g⁻¹ was examined by using a Land 2001A cell test system (Wuhan, China) at room temperature. The rate charge and discharge performance of $Li_4Ti_5O_{12}$ electrode todes.

3. Results and discussion

3.1. TG-DSC measurement of amorphous TiO₂

Fig. 1 shows the TG-DSC curves of amorphous TiO₂ in air atmosphere. It can be observed that the DSC curve of sample has a sharp exothermic peak from 227 °C, which is corresponding with a main weight loss of 26.6 wt% in TG curve from 227 to 478 °C. This is due to decomposition and burning of CTAB and the content of CTAB in amorphous TiO₂ is 26.6 wt%. Thus, it can be obtained the content of carbon in amorphous TiO₂ is 16.6 wt%. Another sharp exothermic peak is found at about 450 °C, which may be attributed to the changing of TiO₂ crystal from amorphous to anatase. An

Fig. 8. EIS of $Li_4Ti_5O_{12}$ synthesized using different crystal structural TiO_2 : (a) amorphous TiO_2 ; (b) anatase TiO_2 ; (c) hybrid phase and (d) rutile TiO_2 .

Fig. 9. Specific capacity (a) and cycling performance (b) of $\rm Li_4Ti_5O_{12}$ synthesized using different TiO₂ with crystal structure of amorphous, anatase, hybrid phase and rutile.

endothermic peak is observed at around 660 °C, which may be due to the TiO₂ crystal changing from anatase to ruile.

3.2. Structure and morphology of TiO₂ nanoparticles

The XRD patterns of amorphous TiO₂ after heat treatment at different temperatures in air condition are shown in Fig. 2. It can be seen from Fig. 2a that the patterns of TiO₂ without heat treatment do not contain the peaks of the anatase and rutile phase. This suggests that the as-prepared TiO₂ without heat treatment is predominantly in amorphous phase. It can be observed from Fig. 2b and d that the patterns of TiO₂ after treatment at 450 °C and 900 °C is in good agreement with JCPDS file of anatase TiO₂ (card no. 21-1272) and rutile TiO_2 (card no. 21-1276), which suggests the formation of pure anatase and ruile TiO_2 . Fig. 2c shows that the sample of TiO_2 consists of mixed anatase and rutile TiO₂ after the amorphous TiO₂ was treated under 700 °C for 8 h. Therefore, it can be concluded that the TiO₂ crystal treated at high temperature changes significantly along with the increase in treatment temperature, and the amorphous, anatase, anatase and rutile hybrid phase and rutile TiO₂ are obtained to use as the titanium source for synthesis of Li₄Ti₅O₁₂.

The SEM images of amorphous TiO_2 after heat treatment at different temperatures in air condition are shown in Fig. 3. As shown in Fig. 3a, the amorphous TiO_2 consists of spherical particles with average diameter of 200–300 nm, which are the agglomerates of much smaller primary particles with diameter of about 10–20 nm.

Fig. 10. Rate charge and discharge performance of Li₄Ti₅O₁₂ synthesized using different crystal structural TiO₂ at charge and discharge current densities of 17.5, 87.5 and 175 mA g⁻¹: (a) amorphous TiO₂; (b) anatase TiO₂; (c) hybrid phase and (d) rutile TiO₂.

The amorphous TiO₂ nanoparticles show highly ordered structure with well-defined secondary and primary particles. After heat treatment at 450 °C, it can be seen from Fig. 3b that the morphology TiO₂ does not change significantly and only the grain size of secondary particles has some decrease. This is due to the decomposition and burning of CTAB. Whereas, Fig. 3c shows that the morphology TiO₂ changes greatly after heat treatment at 700 °C. The sample consists of two type particles with obviously different grain size about 50 nm and 300 nm, respectively. When the amorphous TiO₂ is treated at 900 °C, Fig. 2d has shown that the sample is pure rutile TiO₂. From Fig. 3d, it can be obtained that the grain size of rutile TiO₂ is about 300–400 nm. Thus, it can be concluded that the small size particles in the sample after treatment at 700 °C is anatase TiO₂ and large size particles is rutile TiO₂.

3.3. Synthesis of Li₄Ti₅O₁₂ and morphology characterization

Fig. 4 shows the TG-DSC curves of precursors of Li_2CO_3 and TiO_2 with different crystal structure in air atmosphere. It can be observed from Fig. 4a that DSC curve of sample has a sharp exothermic peak at 300 °C, which corresponds with the main weight loss in TG curve from 200 °C to 350 °C. This is due to decomposition and burning of CTAB. Another exothermic peak is also found at 400 °C and a weight lose is observed on the TG curve at the temperatures ranging from 350 to 450 °C. This may be attributed to the loss of crystal water in the amorphous TiO_2 and decomposition of Li_2CO_3 , and these two processes occur simultaneously. However, for the samples b, c and d, TG curves present that there is no further weight

loss starting from temperatures of 540 °C, 600 °C and 630 °C, and an exothermic behavior can be observed on the DSC curves. This suggests that the decomposition reactions of Li₂CO₃ end and the reaction of TiO₂ with Li₂O as the decomposition product is starting and this reaction is an exothermic reaction. Therefore, it can be found that the reactivity of TiO₂ with Li₂CO₃ gradually decreases with the TiO₂ crystal structure changing from amorphous to rutile, and the synthesis reaction of Li₄Ti₅O₁₂ becomes difficulty.

Fig. 5 shows the XRD patterns of $Li_4Ti_5O_{12}$ synthesized using TiO_2 with different crystal structure. It can be seen that the patterns of sample using the amorphous TiO_2 is in good agreement with JCPDS file (card no. 49-0207), confirming the formation of pure spinel $Li_4Ti_5O_{12}$ (Fig. 5a). While obviously impurity phase peaks of rutile TiO_2 can be observed in the Fig. 5b–d, and the peaks become stronger with TiO_2 crystal structure changing from the amorphous to rutile, which suggests an increase in the content of rutile TiO_2 in the $Li_4Ti_5O_{12}$. Therefore, it can be obtained that the reactivity of TiO_2 with Li_2CO_3 decreases significantly as the TiO_2 crystal structure changes from anatase to rutile. This result is corresponding with that of Fig. 4.

As shown in Fig. 6, the morphology of $Li_4Ti_5O_{12}$ synthesized using different crystal structure TiO_2 also change significantly. With the TiO_2 crystal changing from anatase to rutile, it can be seen that the particle size of $Li_4Ti_5O_{12}$ increases obviously and the adhesion between particles is more serious. This behavior is in good agreement with raw material of TiO_2 obtained at different temperatures treatment to amorphous TiO_2 . Thus, the morphology, particle size and crystal structure of TiO_2 are very important for the synthesis of ${\rm Li}_4{\rm Ti}_5{\rm O}_{12}$ by solid-state method, which has a significant effect on the morphology and particle size of ${\rm Li}_4{\rm Ti}_5{\rm O}_{12}.$

3.4. CV and EIS characterization of $Li_4Ti_5O_{12}$

Fig. 7 shows the CV of Li₄Ti₅O₁₂ synthesized using different crystal TiO₂. It can be seen that the cathodic peaks occur at 1.62, 1.64, 1.65 and 1.65 V for the Li₄Ti₅O₁₂ sample a, b, c and d, respectively, while the corresponding anodic peaks are all at around 1.52 V. The sample a using amorphous TiO₂ has a slightly higher lithiation potential and lower delithiation potential than those of other samples. And all samples show excellent reversibility. The EIS results of Li₄Ti₅O₁₂/Li half cells after three cycles are plotted in Fig. 8. All cells were cycled 3 times before the EIS measurement to ensure the complete formation of Li₄Ti₅O₁₂ electrode. It can be seen that all EIS patterns are composed of one depressed semicircle at high to middle frequency and a slope line at low frequency. The intersection of the slope line with real axis refers to a bulk resistance $(R_{\rm b})$, which reflects the electronic and ionic resistance of two electrodes and electrolyte/separator. The depressed semicircle at high to medium frequency corresponds to the charge transfer resistance $(R_{\rm ct})$ and its related double-layer capacitance $(C_{\rm dl})$. The slopping line at low frequency represents the Warburg impedance, which is associated with lithium-ion diffusion in the Li₄Ti₅O₁₂ particles. It can be seen that the $R_{\rm b}$ of Li₄Ti₅O₁₂ increases slightly when the TiO₂ crystal structure changes from anatase to rutile type, while the R_{ct} increases significantly. The high R_{ct} of Li₄Ti₅O₁₂ may be attributed to the larger particle size of Li₄Ti₅O₁₂, which is resulted from the lower reaction activities of rutile TiO₂ with Li₂CO₃.

3.5. Charge/discharge and cycling performance of Li₄Ti₅O₁₂

Fig. 9 shows the specific capacity and cycling performance of $Li_4Ti_5O_{12}$ synthesized using TiO_2 with different crystal structure at current density of 17.5 mA g^{-1} . It can be seen from Fig. 9a that all samples shows excellent change and discharge platform at around 1.55 V and the specific capacities are 167, 161, 147 and 144 mAh g^{-1} for the samples a–d, respectively. The specific capacity decreases with the TiO_2 crystal structure changing from amorphous to rutile, and the sample using amorphous TiO_2 shows highest specific capacity. Fig. 9b presents the cycling performance of $Li_4Ti_5O_{12}$ samples. It can be observed that the capacity retentions of all samples are above 97% after 50 cycles and these materials show good cycle performance. Thus, the TiO_2 crystal structure has not large effects on the cycling performance of $Li_4Ti_5O_{12}$ material.

The rate charge and discharge performance of Li₄Ti₅O₁₂ synthesized using different crystal structural TiO₂ at charge and discharge current densities of 17.5, 87.5 and 175 mA g⁻¹ was tested as shown in Fig. 10. It can be seen that the discharge specific capacities at discharge current density 175 mA g^{-1} for the Li₄Ti₅O₁₂ samples a–d are 107.7, 89.5, 86.4 and 78.9 mAh g⁻¹, respectively. The rate performance of Li₄Ti₅O₁₂ deteriorates with the TiO₂ crystal structure changing from anatase to rutile type. Therefore, it can be obtained that the TiO₂ crystal has significant effects on the rate charge and discharge performance. This may be attributed to the larger size of Li₄Ti₅O₁₂ particles and increase of impurity phase of rutile TiO₂ when the TiO₂ crystal structure changes from anatase to rutile type.

4. Conclusions

 TiO_2 as the titanium source for the synthesis of $Li_4Ti_5O_{12}$ is very significant for the structure, morphology and electrochemical performance of Li₄Ti₅O₁₂ synthesized by solid-state method. In this work, TiO₂ with different crystal structure are prepared and used as the titanium source to investigate the effects of TiO₂ crystal structure on the performance of Li₄Ti₅O₁₂ anode material. It has been found that the structure, morphology and electrochemical performance of Li₄Ti₅O₁₂ are influenced significantly by the TiO₂ crystal structure. With the TiO₂ crystal structure changing from amorphous to anatase, hybrid phase and rutile TiO₂, the content of rutile TiO₂ phase in the Li₄Ti₅O₁₂ increases and the particles size also becomes larger, which leads to the decrease in the specific capacities of corresponding Li₄Ti₅O₁₂ at different current densities. However, the charge and discharge reversibility and cycling performance of Li₄Ti₅O₁₂ almost does not change with the TiO₂ crystal structure. In this work, the Li₄Ti₅O₁₂ material using amorphous TiO₂ shows best electrochemical performance.

Acknowledgements

This work was supported by China Postdoctoral Science Foundation (No. 20100470296), National Natural Science Foundation of China (No. 50802049 and No. 50632040), Shenzhen Technical Plan Project (No. JP200806230010A and No. SG200810150054A), Guangdong Province Innovation R&D Team Plan for Energy and Environmental Materials.

References

- [1] E. Ferg, R.J. Gummow, A.d. Kock, M.M. Thackeray, J. Electrochem. Soc. 141 (1994) L147.
- [2] T. Ohzuku, A. Ueda, N. Yamamoto, J. Electrochem. Soc. 142 (1995) 1431.
- [3] L. Aldon, P. Kubiak, M. Womes, J.C. Jumas, J. Olivier-Fourcade, J.L. Tirado, J.I. Corredor, C.P. Vicente, Chem. Mater. 16 (2004) 5721.
- [4] S.S. Zhang, K. Xu, T.R. Jow, Electrochim. Acta 51 (2006) 1636.
- [5] H. Schranzhofer, J. Bugajski, H.J. Santner, C. Korepp, K.-C. Möller, J.O. Besenhard, M. Winter, W. Sitte, J. Power Sources 153 (2006) 391.
- [6] S.S. Zhang, K. Xu, T.R. Jow, J. Power Sources 130 (2004) 281.
- [7] T. Yuan, K. Wang, R. Cai, R. Ran, Z.P. Shao, J. Alloy Compd. 477 (2009) 665.
- [8] T.F. Yi, J. Shu, Y.R. Zhu, X.D. Zhu, R.S. Zhu, A.N. Zhou, J. Power Sources 195 (2010) 285.
- [9] D. Capsoni, M. Bini, V. Massarotti, P. Mustarelli, G. Chiodelli, C.B. Azzoni, M.C. Mozzati, L. Linati, S. Ferrari, Chem. Mater. 20 (2008) 4291.
- 10] J. Wolfenstine, J.L. Allen, J. Power Sources 180 (2008) 582.
- [11] S. Huang, Z. Wen, B. Lin, J. Han, X. Xu, J. Alloy Compd. 457 (2008) 400.
- [12] S.H. Huang, Z.Y. Wen, X.J. Zhu, Z.H. Gu, Electrochem. Commun. 6 (2004) 1093.
- [13] J. Shu, J. Solid State Electrochem. 13 (2009) 1535.
- [14] K.M. Colbow, J.R. Dahn, R.R. Haering, J. Power Sources 26 (1989) 397.
- [15] E. Ferg, R.J. Gummow, A. Dekock, M.M. Thackeray, J. Electrochem. Soc. 141 (1994) L147.
- [16] S. Takai, M. Kamata, S. Fujine, K. Yoneda, K. Kanda, T. Esaka, Solid State Ionics 123 (1999) 165.
- [17] K. Zaghib, M. Simoneau, M. Armand, M. Gauthier, J. Power Sources 82 (1999) 300.
- [18] T. Yuan, R. Cai, P. Gu, Z.P. Shao, J. Power Sources 195 (2010) 2883.
- [19] D.H. Wang, D.W. Choi, Z.G. Yang, V.V. Viswanathan, Z.M. Nie, C.M. Wang, Y.J. Song, J.G. Zhang, J. Liu, Chem. Mater. 20 (2008) 3435.
- [20] B. Li, F. Ning, Y.-B. He, H. Du, Q.-H. Yang, J. Ma, F. Kang, C.-T. Hsu, Int. J. Electrochem. Sci. 6 (2011) 3210.